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ABSTRACT: The paper provides background information for the modification of SANISAND (2004) constitutive model in order to 
capture the mechanical behavior of sand in the low stress regime. In the implementation of this model in finite element programs, 
computational difficulties arise due to the gradient discontinuity which occurs at the apex of the yield surface when it deals with soil 
deposits subjected to low initial confining pressure. This singularity often causes the stress-point integration algorithm to perform 
inefficiently or even fail. In this study a hyperbolic yield surface was introduced to eliminate the singular tip from the original yield 
surface, by adjusting only one parameter. Undrained triaxial compression tests on Toyoura sand are performed to show the 
performance of the proposed formulation. 

RÉSUMÉ: Cet article fournit des informations de base pour la modification du modèle constitutif de SANISAND (2004) afin 
de cerner le comportement mécanique du sable dans un régime à faible contrainte. Lors de l'utilisation de ce modèle dans 
des logiciels à éléments finis, des problèmes de calcul apparaissent à cause de la discontinuité du gradient qui se produit au sommet 
de la surface de limite élastique, pour des dépôts de sol soumis à une faible pression initiale de confinement. Cette singularité 
provoque souventune mauvaise exécution de l'algorithme d'intégration des points de contrainte, voir son échec. Dans cette étude, une 
surface de limite élastique hyperbolique a été introduite pour éliminer le point singulier de la surface de limite élastique initiale, en 
ajustantuniquement un paramètre. Des essais de compression triaxiale non drainés sur du sable de Toyoura sont effectués pour 
montrer la performance de la formulation proposée. 
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1  INTRODUCTION 

Understanding the behavior of offshore marine sands subjected 
to cyclic loadings is essential for predicting the response of 
offshore foundations under monotonic and cyclic loading 
conditions. Therefore, it is necessary a constitutive material 
model that properly describes the characteristic behavior of 
water saturated soil under cyclic loading. 

Constitutive models based on perfect plasticity are capable 
to reproduce nonlinearity and irreversible behavior of the soil 
when it is subjected to monotonic loadings. On the contrary, 
they are not sufficient to describe the highly non-linear stress 
path dependent shear stiffness, the accumulation of pore 
pressure, permanent shear strains and volumetric strains under 
repeated number of cycles. In the last two decades several 
advanced constitutive models (Cubrinovski and Ishihara 1998, 
Gajo and Wood 1999, Mroz and Pietruszczak 1983, Wang et al. 
1990) have been carried out to investigate the cyclic/dynamic 
behavior of sands.  

The three dimensional critical state two-surface plasticity 
models for sands proposed by Dafalias and Manzari (2004) is a 
conceptually simple constitutive model, which adequately 
describes induced anisotropy, history-dependent dilatancy and 
fabric evolution of sands. It is part of the SANISAND (Simple 
ANIso-tropic SAND) models developed by Dafalias and 
collaborators (Manzari and Dafalias 1997, Li and Dafalias 
2000, Dafalias and Manzari 2004, Dafalias et al. 2004, Taiebat 
and Dafalias 2007). 

Furthermore, this version of SANISAND has been 
implemented as a User defined Material (UMAT) code in 
Fortran for the Finite Element Code ABAQUS (Gudehus et al. 

2008) and it can also be compiled together with 
IncrementalDriver (Niemunis 2008). Nonetheless, the 
implementation of SANISAND (2004) model in finite element 
programs involves computational difficulties due to the gradient 
discontinuities which occur at the tip of the yield surface. This 
implies that inefficient performance of the stress integration 
scheme might be experienced when the response of soil 
deposits in the low stress regime is investigated. 

The objective of the present study is to propose a 
formulation which is able to model the mechanical behavior of 
sand subjected to low initial confining pressure. Therefore, the 
formulation aims at introducing a rounded hyperbolic yield 
surface to eliminate the singular apex from the original yield 
criterion. Due to this modification, the model is denoted the 
modified SANISAND (2004) model. The modification of the 
constitutive model is shown in details in multiaxial formulation. 
In addition, the performance of the modified SANISAND 
(2004) model is presented with respect to that of the original 
model (Dafalias and Manzari, 2004) to simulate undrained 
triaxial compression tests for loose sand subjected to low initial 
confining pressure.   
 

1 .1  Notation and assumptions 

In this study the soil mechanics convention is considered, where 
compression is assumed positive and effective stresses are taken 
into account.  

To represent vector and tensor quantities, the following 
standard notation is adopted. For any two vectors,𝐮𝐮, 𝐯𝐯 ϵ ℝ3, the 
dot product is defined as: 𝐮𝐮 ∙ 𝐯𝐯 = uivi and the dyadic product 
as [𝐯𝐯⊗𝐰𝐰]ij = viwj. For any two second-order tensors X, Y 
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ϵ ℒ , 𝐗𝐗 ∙ 𝐘𝐘 = XijYij  and [𝐗𝐗⊗ 𝐘𝐘]ijkl = XijYkl . The quantity 
‖𝐗𝐗‖ = √𝐗𝐗 ∙ 𝐗𝐗 represents the Euclidean norm of the second-
order tensor X. 

Considering small deformations and rotations, the total 
strain rate can be divided into elastic (𝛆𝛆ė) and plastic term   
(𝛆𝛆ṗ): 

 
𝛆̇𝛆 = 𝛆̇𝛆e + 𝛆̇𝛆p                 (1) 
 
where ε is the strain tensor. 

2  THE MODIFIED SANISAND (2004) MODEL IN 
TRIAXIAL SPACE 

2.1  Yield surface 

 
In the proposed formulation the elastic stress-strain relationship 
is defined as reported in the work of Dafalias and Manzari 
(2004). Regarding the yield surface, SANISAND (2004) 
constitutive model suggested the following expression: 
 

f = {(𝐬𝐬 − p𝛂𝛂) ∙ (𝐬𝐬 − p𝛂𝛂)}1/2 − �2
3

mp = 0              (2) 

 
where s is the deviatoric stress tensor and p is the pressure. 
While the stress-ratio quantity α is called the back-stress ratio 
and it is the rotational hardening variable of the yield surface, 
which represents the slope in p-q space of the bisector of the 
yield surface. The coefficient m is the tangent of half the 
opening angle of the yield surface at the origin. However, the 
open conical yield surface is characterized by a singular point, 
which is the apex as shown in Figure 1. 
 

 
Figure 1: SANISAND (2004) yield surface in p-q plane. 

 
In order to avoid the gradient discontinuity at the apex, a 

hyperbolic yield surface was introduced. Therefore, the yield 
surface was regularized by adopting the trigonometric rounding 
technique of Sloan and Booker (1986). The main features of 
this yield surface are: 1) continuous and differentiable at all 
stress states and 2) approximate SANISAND (2004) yield 
function as closely as required by adjusting one parameter. The 
model still maintains an open conical yield surface, which can 
rotate around the cone apex at the origin of the stress space, and 
three additional open wedge-type surfaces with apex at the 
origin of stress space: the critical state surface (CSS), the 
bounding surface (BS) and the dilatancy surface (DS).  

In the present formulation the cohesion c was first 
introduced as pt = ccotgφ and then, the hydrostatic pressure 
p* is given as: 

 
p∗ = p + pt         (3) 
 
where φ is the friction angle. The distance between the 

vertex of the original yield surface and the hyperbolic yield 

surface is defined by the constant parameter b, which is a 
fraction of pt: 

 
b = ηpt, with η ϵ (0,1]         (4) 

 
Therefore, the hyperbolic yield function can be written as 

follows: 
 

f = {(𝐬𝐬 − p∗𝛂𝛂) ∙ (𝐬𝐬 − p∗𝛂𝛂) + (mb)2}1/2 − �2
3

mp = 0        (5) 

 
In the triaxial stress plane the equation of the yield surface is 

proposed in terms of the triaxial stress quantities p =
(σ1 + 2σ3)/3  and q = (σ1 − σ3) , where σ1  and σ3  are 
respectively the maximum and the minimum principle stress: 

 
f ∗ = {(q − αp∗)2 + m2b∗2}

1
2 − mp∗ = 0        (6) 

 
where b∗ = �3/2b.  
 
In Figure 2a and 2b the yield surface of the modified 

SANISAND (2004) model is illustrated in triaxial stress plane 
and in the multiaxial space, respectively along with the CSS 
(αc), the BS (αb) and the DS (αd). 

   

 
 

 
 
Figure 2: The yield surface of the modified SANISAND (2004) model 
in q-p* plane (a) and in the multiaxial space (b).  

 
Several meridional sections of the hyperbolic yield surface 

are plotted in Figure 3a, varying the parameter b* and setting 
the hardening variable α  equal to zero. Recall that the 
hyperbolic yield surface closely represents the original yield 
surface for b∗ ≤ 0.25pt. While the effect of the back stress 
ratio is investigated by considering b = pt, see Figure 3b. 
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 (a)  

 
(b) 

 
Figure 3: Effect of b* parameter (a) and the back stress ratio α (b) on 
the hyperbolic yield surface in q-p plane.   

The formulation of the critical state, bounding and dilatancy 
surfaces are considered depending on the back stress ratio α 
and they are defined as in the work of Dafalias and Manzari 
(2004). Note that in the original formulation the dependency of 
CSS, BS and DS in the q-p space on the Lode angle θ is given 
by the expression suggested by Argyris et al. (1974). 
Nevertheless, the implementation of the modified SANISAND 
(2004) takes into account the expression suggested by Van 
Eekelen (Van Eekelen, 1980), which is more accurate for high 
values of the critical state friction angle (Lin and Bazant, 1986). 

2.2  Flow rule 

The plastic flow direction is defined as: 
 
𝛆̇𝛆p = γ̇ 𝐑𝐑         (7) 
 
Where γ̇ ≥ 0 and it represents the plastic multiplier. R is the 
plastic potential, which is expressed as follows: 
 
𝐑𝐑 = ∂g

∂𝛔𝛔
= 𝐧𝐧 + 1

3
D𝐈𝐈                  (8) 

 
Where n = (𝐬𝐬 − p∗𝛂𝛂)/‖𝐬𝐬 − p∗𝛂𝛂‖  and D is the dilatancy 
coefficient. The flow rule is still considered non-associative as 
in SANISAND (2004) model and D is given as: 
 

D = xDDM = �
D = DDM, x = 1 , if p > pt

   D = xDDM,                  if p ∈ [0; pt]
D = 0,                    if p < 0

       (9) 

 
Where x = p

pt
  and DDM is the dilatancy coefficient defined 

by Dafalias and Manzari (2004). This implies that D depends on 
the variation of the plastic volumetric strain, which was 
assumed zero for negative values of the mean pressure. The 
linear interpolation of the dilatancy coefficient in the interval 
[0, pt] was taken into account in order to have zero change in 
volume at the critical state and have a plastic potential function 
which varies in the proximity of the apex of the hyperbole. In 
addition, these assumptions may be considered valid, since the 
area subjected to regularization is small [-pt, pt].  

The loading index L is obtained by applying the consistency 
condition f ∗̇ = 0 and yields to: 

 
L = 1

Kp
�∂f

∗

∂p∗
∂p∗

∂𝛔𝛔
+ ∂f∗

∂𝐬𝐬
∂𝐬𝐬
∂𝛔𝛔
�                  (10) 

 
Kp = −�∂f

∗

∂𝛂𝛂
𝛂𝛂�        (11) 

 
The partial derivatives of the yield surface with respect to 

the stress and the internal variables can be determined as 
follows: 

 
∂f∗

∂𝛔𝛔
= ∂f∗

∂p∗
∂p∗

∂𝛔𝛔
+ ∂f∗

∂𝐬𝐬
∂𝐬𝐬
∂𝛔𝛔

=   

= 1
A1
�(𝐬𝐬 − p∗𝛂𝛂) − 1

3
𝟏𝟏[𝛂𝛂 ∙ (𝐬𝐬 − p∗𝛂𝛂)]� − 1

3
�2
3

m2𝟏𝟏    (12) 
∂f∗

∂𝛂𝛂
= − 1

A1
p∗(𝐬𝐬 − p∗𝛂𝛂)       (13) 

 
Where 
 
∂f∗

∂𝐬𝐬
= 1

A1
(𝐬𝐬 − p∗𝛂𝛂)       (14) 

 
∂s
∂𝛔𝛔

= 𝐈𝐈 − 1
3
𝟏𝟏⨂𝟏𝟏                (15) 

 
∂f∗

∂p
= 1

A1
(𝐬𝐬 − p∗𝛂𝛂) ∙ (−𝛂𝛂) − �2

3
m                  (16) 

 
∂p
∂σ

= 1
3
𝟏𝟏                            (17)  

With A1 = �(𝐬𝐬 − p∗𝛂𝛂) ∙ (𝐬𝐬 − p∗𝛂𝛂) + 2
3

m2b∗2. 

3  THE MODIFIED SANISAND (2004) IN THE LOW 
STRESS REGIME 

The implementation of the modified SANISAND (2004) model 
in finite element code was performed by modifying the 
subroutine freely available on the open-source database of 
constitutive models soilmodels.info (Gudehus et al., 2008). The 
modified SANISAND (2004) was implemented in the code by 
deploying an explicit, adaptive stress-point algorithm with error 
control, based on Runge-Kutta-Fehlberg scheme of third order 
(RKF-32) to integrate the constitutive equations at the Gauss 
point level. 

In this section the performance of the stress integration 
scheme of the modified SANISAND (2004) model is compared 
with respect to that of the original constitutive soil model for 
the case of low stress regime, see Figure 4. The simulations of 
undrained triaxial tests for loose sandy sample (e0=0.996) were 
carried out by deploying IncrementalDriver (Niemunis, 2008).  
In addition, the analyses were conducted setting pt = 5kPa and 
initial hydrostatic pressure p0 = 30kPa. Note that the material 
constants considered are those referred to Toyoura sand, which 
are listed in the work of Dafalias and Manzari (2004). 
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Figure 4: Monotonic undrained compression triaxial test on Toyoura 
sand. Comparison between the performance of SANISAND (2004) and 
the modified SANISAND (2004) model. 

 
The outcomes highlighted that in the new formulation the 

stress integration does not fail as in the original formulation, 
when it deals with sandy soil deposits subjected to low initial 
confining pressure. 

In addition, the algorithm was tested by decreasing the 
number of increments of the strain step applied ( Nincr =
500, 100 and 50). First, it was observed that the outcomes of 
the simulations overlapped the results obtained by setting 
Nincr = 1000 for a given error tolerance of the explicit, 
adaptive stress-point algorithm (TOL = 10−5). A relative error 
with respect the exact solutions of σ  and α , obtained 
numerically by deploying the RKF23 for error tolerance of 
TOL = 10−6 , was calculated for each simulation. Results 
showed that a relative error of  ERRσ,α = 10−6 was achieved 
assuming Nincr = 500. While the accuracy of the algorithm 
was estimated for the following tolerance values: TOL =
10−5, 10−4 and 10−3. It was noticed that the accuracy of the 
solution decreased by increasing the tolerance constant TOL. 
Furthermore, it was possible to obtain a relative error 
ERRσ,α ≤ 10−4, by setting the error tolerance not larger than 
10−4. 

4  CONCLUSION 

A smooth hyperbolic approximation to SANISAND (2004) 
yield function is derived. The rounded hyperbolic surface is 

continuous and differentiable for all stress states, and it can 
approximate the original yield surface by adjusting one 
parameter. The present modification does not alter the features 
of the previous version of SANISAND (2004). 
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